3.27 \(\int \frac{1}{(e \cot (c+d x))^{3/2} (a+a \cot (c+d x))} \, dx\)

Optimal. Leaf size=111 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d e^{3/2}}-\frac{\tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d e^{3/2}}+\frac{2}{a d e \sqrt{e \cot (c+d x)}} \]

[Out]

ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]]/(a*d*e^(3/2)) - ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*C
ot[c + d*x]])]/(Sqrt[2]*a*d*e^(3/2)) + 2/(a*d*e*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.451772, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3569, 3653, 3532, 205, 3634, 63} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d e^{3/2}}-\frac{\tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d e^{3/2}}+\frac{2}{a d e \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x])),x]

[Out]

ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]]/(a*d*e^(3/2)) - ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*C
ot[c + d*x]])]/(Sqrt[2]*a*d*e^(3/2)) + 2/(a*d*e*Sqrt[e*Cot[c + d*x]])

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rubi steps

\begin{align*} \int \frac{1}{(e \cot (c+d x))^{3/2} (a+a \cot (c+d x))} \, dx &=\frac{2}{a d e \sqrt{e \cot (c+d x)}}+\frac{2 \int \frac{-\frac{a e^2}{2}-\frac{1}{2} a e^2 \cot (c+d x)-\frac{1}{2} a e^2 \cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{a e^3}\\ &=\frac{2}{a d e \sqrt{e \cot (c+d x)}}+\frac{\int \frac{-\frac{1}{2} a^2 e^2-\frac{1}{2} a^2 e^2 \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx}{a^3 e^3}-\frac{\int \frac{1+\cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{2 e}\\ &=\frac{2}{a d e \sqrt{e \cot (c+d x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{2 d e}-\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{2} a^4 e^4-e x^2} \, dx,x,\frac{-\frac{1}{2} a^2 e^2+\frac{1}{2} a^2 e^2 \cot (c+d x)}{\sqrt{e \cot (c+d x)}}\right )}{2 d}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d e^{3/2}}+\frac{2}{a d e \sqrt{e \cot (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{a+\frac{a x^2}{e}} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d e^2}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d e^{3/2}}-\frac{\tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d e^{3/2}}+\frac{2}{a d e \sqrt{e \cot (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.95282, size = 176, normalized size = 1.59 \[ \frac{2 \sin ^4(c+d x) \left (\cot ^4(c+d x)+2 \cot ^2(c+d x)-\sqrt{2} \cot ^{\frac{5}{2}}(c+d x) \csc ^2(2 (c+d x)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )+\sqrt{2} \cot ^{\frac{5}{2}}(c+d x) \csc ^2(2 (c+d x)) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+2 \cot ^{\frac{5}{2}}(c+d x) \csc ^2(2 (c+d x)) \tan ^{-1}\left (\sqrt{\cot (c+d x)}\right )+1\right )}{a d e \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x])),x]

[Out]

(2*(1 + 2*Cot[c + d*x]^2 + Cot[c + d*x]^4 - Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*
Csc[2*(c + d*x)]^2 + Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*Csc[2*(c + d*x)]^2 + 2*
ArcTan[Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*Csc[2*(c + d*x)]^2)*Sin[c + d*x]^4)/(a*d*e*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.034, size = 394, normalized size = 3.6 \begin{align*}{\frac{\sqrt{2}}{8\,da{e}^{2}}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}}{4\,da{e}^{2}}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{\sqrt{2}}{4\,da{e}^{2}}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}}{8\,dae}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{\sqrt{2}}{4\,dae}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{\sqrt{2}}{4\,dae}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+2\,{\frac{1}{dae\sqrt{e\cot \left ( dx+c \right ) }}}+{\frac{1}{da}\arctan \left ({\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt{e}}}} \right ){e}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x)

[Out]

1/8/d/a/e^2*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(
d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/4/d/a/e^2*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(
e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/4/d/a/e^2*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^
(1/2)+1)+1/8/d/a/e/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/
(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/4/d/a/e/(e^2)^(1/4)*2^(1/2)*arctan(2^(1
/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/4/d/a/e/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c
))^(1/2)+1)+2/a/d/e/(e*cot(d*x+c))^(1/2)+arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d/e^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.48215, size = 1216, normalized size = 10.95 \begin{align*} \left [-\frac{\sqrt{2} \sqrt{-e}{\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (-\sqrt{2} \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} - 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) + 2 \, \sqrt{-e}{\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (\frac{e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) - 2 \, \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right ) - 8 \, \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{4 \,{\left (a d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + a d e^{2}\right )}}, -\frac{\sqrt{2} \sqrt{e}{\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \arctan \left (-\frac{\sqrt{2} \sqrt{e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \,{\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) - 2 \, \sqrt{e}{\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \arctan \left (\frac{\sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt{e}}\right ) - 4 \, \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{2 \,{\left (a d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + a d e^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(2)*sqrt(-e)*(cos(2*d*x + 2*c) + 1)*log(-sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x +
 2*c))*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) - 1) - 2*e*sin(2*d*x + 2*c) + e) + 2*sqrt(-e)*(cos(2*d*x + 2*c) +
1)*log((e*cos(2*d*x + 2*c) - e*sin(2*d*x + 2*c) - 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*s
in(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) + 1)) - 8*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x +
2*c))*sin(2*d*x + 2*c))/(a*d*e^2*cos(2*d*x + 2*c) + a*d*e^2), -1/2*(sqrt(2)*sqrt(e)*(cos(2*d*x + 2*c) + 1)*arc
tan(-1/2*sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c)
+ 1)/(e*cos(2*d*x + 2*c) + e)) - 2*sqrt(e)*(cos(2*d*x + 2*c) + 1)*arctan(sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d
*x + 2*c))/sqrt(e)) - 4*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c))/(a*d*e^2*cos(2*d*x +
 2*c) + a*d*e^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{\left (e \cot{\left (c + d x \right )}\right )^{\frac{3}{2}} \cot{\left (c + d x \right )} + \left (e \cot{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(3/2)/(a+a*cot(d*x+c)),x)

[Out]

Integral(1/((e*cot(c + d*x))**(3/2)*cot(c + d*x) + (e*cot(c + d*x))**(3/2)), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cot \left (d x + c\right ) + a\right )} \left (e \cot \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((a*cot(d*x + c) + a)*(e*cot(d*x + c))^(3/2)), x)